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We recently presented a new method for developing exchange-correlation functionals using ab initio numerical
exchange-correlation potentials and accurate total energies. A preliminary functional was presented. In this
paper we refine the functional expansion and demonstrate that significantly improved atomization energies
can be obtained by amending the fitting procedure to include atomization energies rather than total molecular
energies. A new functional is presented that provides an improved description of simple first-row hydrogen
abstraction reactions compared to conventional continuum density functionals. This improvement is achieved
without introducing any fraction of exact orbital exchange.

1. Introduction

In our first paper on this topic,1 hereafter denoted paper I,
we presented a method for developing new generalized gradient
approximation (GGA) exchange-correlation functionals from ab
initio and energetic data. Several aspects of the new functionals
differ significantly from those of conventional functionals.
(i) The functionals represent exchange and correlation effects

in a combined manner. Individual exchange and correlation
terms cannot be isolated, which is consistent with the view that
the two are not trivially separable. For example, the failure of
restricted Hartree-Fock (RHF) theory to provide an accurate
description of dissociation is usually attributed to the lack of
correlation in the method. However, the RHF energy of
infinitely separated H2 is in error by an exchange integral.
Second, it is often stated, though not fully understood, that
exchange functionals must include nondynamic correlation
effects.
(ii) The new functionals do not include any exact orbital

exchange. Although adiabatic arguments indicate that it should
enter, we do not feel it is an essential feature of a quality
functional. The optimized effective potential (OEP)2 success-
fully represents atomic Hartree-Fock properties, suggesting that
a GGA functional should be able to represent adequately the
effect of exact exchange. Like the OEP, an exchange GGA
potential is multiplicative and so, for an asymptotically vanishing
exchange-correlation potential, theith Kohn-Sham orbital
asymptotically behaves as exp(-(-2εi)1/2r). In contrast, the
presence of conventional nonmultiplicative exchange constrains
the asymptotic behavior of all the orbitals to be governed by
the HOMO eigenvalue,3 which is less desirable from a physical
viewpoint. Finally, although exchange-correlation potentials
appear to be reasonably well-behaved, correlation potentials in
the Hartree-Fock-Kohn-Sham formalism are highly oscilla-
tory.4 The inclusion of exact exchange can therefore lead to a
residual which is difficult to represent by a density functional.
(iii) Conventional functionals are often based on the local

density approximation5 (LDA). This is derived from a free-
electron gas, which is a poor representation of a molecular
system, and it follows that LDA predicts poor asymptotic
densities. Gradient corrections are added to the LDA with the
aim of improving the energetics, although since the asymptotic
density contributes little to the energetics, this procedure does
not remove the underlying error in the asymptotic regions. In
contrast, our new functionals are not based on the LDA but are

instead determined by a fitting procedure involving both
energetics and exchange-correlation potentials. The inclusion
of the potential provides information from the entire molecular
environment and should result in improved asymptotic densities.
Furthermore, if our functionals can reproduce accurate exchange-
correlation potentials, then accurate optimized geometries must
follow, since the error in geometries from conventional con-
tinuum functionals arises, for a given basis set, due to the error
in the exchange-correlation potential. (Of course, we recognize
that fitting to potentials is not the only way to develop
functionals that yield accurate structural predictions; such
functionals may also be determined by introducing exact orbital
exchange, and fitting to energetic data alone.)
(iv) Our investigations1,6 highlighted the requirement that for

a continuum functional to achieve both accurate energetics and
asymptotic densities, its exchange-correlation potential must not
vanish asymptotically. This feature, which is a consequence
of integer derivative discontinuities in the energy, had already
been demonstrated theoretically in 1982 by Perdew, Parr, Levy,
and Balduz7 (PPLB) but had not been previously observed in
practical implementations due to the tendency to develop func-
tionals with accurate energetics but not accurate asymptotic
densities.
It can be shown that in a restricted formalism, the asymptotic

potential should be the hardness (I - A)/2 (whereI andA are
the ionization energy and electron affinity, respectively) for
degenerate open-shell systems,8 and less than the hardness for
closed-shell systems. The exchange-correlation potential is
therefore the asymptotically vanishing potential, which gives
the exact density, shifted at all points by the value of the
asymptotic potential. Consequently, for open-shell systems, the
HOMO eigenvalue is not-I, which would be the eigenvalue if
the potential vanished asymptotically, but-(I + A)/2, the
negative of the electronegativity. It is well-known that con-
ventional functionals do give eigenvalues close to this quantity,
and so rather than indicating a failure of conventional func-
tionals, this indicates that conventional exchange-correlation
potentials resemble the shifted PPLB potentials in energetically
important regions. This feature is crucial if a continuum
functional is to give accurate energetics: a functional that yields
an accurate density with a vanishing asymptotic potential gives
a severely underestimated exchange-correlation energy because
the potential in energetically important regions lies well below
that of PPLB and conventional functionals.6
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In asymptotic regions, the potentials of conventional con-
tinuum density functionals such as BLYP9 approach zero, and
so no longer resemble those of PPLB. Although these regions
contribute little to the energy, this discrepancy means the
asymptotic density behaves as

whereN denotes the HOMO orbital, and so for an open-shell
system

whereA is typically much less thanI. The asymptotic density
from conventional functionals is therefore much more diffuse
than the exact density10

and this is consistent with observed overestimated polarizabilities
and bond lengths. To improve conventional functionals, it is
therefore necessary to slow the decay of the asymptotic
potentialswhile leaving the potential in energetically important
regions (and thus the energetics) relatively unchangedssuch that
it approaches the nonzero positive value of PPLB. By ap-
proaching this nonzero valuek, the density behaves as

For open-shell systems wherek is the hardness andεN is the
negative of the electronegativity, the exact asymptotic density
clearly follows

It is nontrivial to amend conventional functionals such that only
their asymptotic potentials change. However, by including the
potential in our fit, our approach offers a convenient way to
achieve potentials resembling those of PPLB. Functionals are
obtained whose potentials closely resemble conventional po-
tentials in energetically important regions but approach nonzero
values asymptotically. The method is summarized in section
2, with particular emphasis on recent improvements that have
been made. In section 3 we present a new functional and
examine its energetics for a set of small first-row molecules. In
section 4 we investigate six simple hydrogen abstraction
reactions. Conclusions are presented in section 5.

2. Methodology

The new exchange-correlation functional is defined as

where

with

whereωabcd are variable parameters and

To compute optimal parameters, a training set of systems is
chosen. In this paper we use the same first-row training set as
that of paper I, namely, the ground states of H, Li, C, N, O, F,
NH2, CH, CH2, O2, Ne, CH4, CO, F2, BH, H2, H2O, N2, LiH,
and HF. For each training system, correlated ab initio electron
densities are computed. For closed-shell systems the coupled
cluster BD method11 is used, while unrestricted second-order
Møller-Plesset theory is used for the open-shell systems. TZ2P
basis sets are used throughout.12,13 These densities are then fed
into a basis set implementation of the Zhao, Morrison, Parr
(ZMP)14 procedure and asymptotically vanishing exchange-
correlation potentialssdenoted ZMP potentialssare computed
on numerical quadrature grids. A functional whose potential
resembles the ZMP potential gives a very poor exchange-
correlation energy because the potential vanishes asymptotically.
Following PPLB and paper I, we require a functional whose
potential resembles the ZMP potential shifted by some ap-
propriate system-dependent value. In an unrestricted frame-
work, this is achieved by minimizing the term

whereV zmp
Mσ (r) is theσ ZMP potential for training systemM,

kMσ represents the unknown shift between the ZMP and exact
continuumσ potential for systemM, V fit

Mσ(r) is theσ potential
of the fitted functional for systemM, andFMσ

q (r) is a weighting
factor. The value ofkMσ influences the exchange-correlation
energy of the functional, and its value must be computed self-
consistently. To do this, we must define a term that, when
minimized, ensures that the energetics are accurately described.
In paper I, where the functional denoted TH1 was developed,
this contribution was the sum of the squares of the errors in the
exchange-correlation energy of the fitted functional

The exact energiesExc
M are not known and so are approximated

as

whereFM is the ab initio density of systemM, Ts[FM] is the
noninteracting kinetic energy associated with the Kohn-Sham
orbitals from the ZMP procedure, andEtot,0

M is the near-exact

lim
rf∞

F(r ) ∼ exp(-2(-2εN)
1/2r) (1)
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total molecular energy computed from atomic energies and
experimental atomization and zero-point energies.15 In the next
section we demonstrate that although this definition ofΩE leads
to accurate total energies, it gives less accurate atomization
energies. In this paper, we therefore choose to redefineΩE as

where the first contribution measures the error in the exchange-
correlation energies of the atoms in the training set, while the
second term measures the error in the exchange-correlation
contributionAExc

M to the atomization energies of the molecules
in the training set. Approximations toAExc

M are trivially
obtained fromExc

M.
The optimum parameters and shifts are then computed by

minimizing the quantity

with respect toωabcd andkMσ. (In paper I, a slightly different
approach was used to compute the shifts.) In practical terms,
we choose initial values forkMσ and determineωabcd from

Using this solution, we then compute improved values forkMσ
via

and continue the procedure to self-consistency. At the end of
the procedure we have a functional defined purely byωabcd.
The functional does not explicitly involvekMσ since these are
introduced only to represent the PPLB shift. The functional
can be implemented in a regular Kohn-Sham algorithm,
although its performance will be limited by several factors. For
example, the accuracy of the suppliedExc

M andAExc
M is limited,

and the functional is obtained by mapping the ab initio density
quantities to the potential, while practical calculations involve
self-consistent densities. In paper I, we described a corrective
procedure for overcoming these errors that decreased total
energy errors by an order of magnitude. This corrective
procedure is very important but may be defined in many ways.
In this paper we choose the following:
• The initial functionalF1 is used to compute self-consistent
total energiesEtot

M for systems in the training set.
• The values of the supplied atomic exchange-correlation
energiesExc

M are shifted by the errors in the self-consistent
atomic energiesEtot

M to giveExc
M(2).

• A new functionalF2 is computed usingExc
M(2) andAExc

M.
• Atomization energies are computed for each molecular system
in the training set with theF2 functional and errors computed.
• The suppliedAExc

M are shifted by the computed errors to give
AExc

M(2).
• A new functional F3 is computed usingExc

M(2) and
AExc

M(2).
• The functional is implemented, and atomic and atomization
energy errors are computed.
• New estimatesExc

M(3) andAExc
M(3) are determined from these

errors, and the final functionalF4 is computed. We find that
it is not necessary to perform further iterations.
In the procedure to date we have used the energy weightwM

) 100. It is important to fit the energetic data well, and this
value appears to give a reasonable balance between energy and
potential fitting. In this work we have also reexamined the value
of q in the weightFMσ

q (r) in eq 16, which was chosen to be2/3
in paper I. The exchange-correlation potential we need to fit
is V zmp

Mσ (r) + kMσ, and so we have examined which value ofq
gives best overall agreement, paying particular attention to
asymptotic regions. For the H and Ne atoms, we observe that
q ) 1/3 is an improvement overq ) 2/3 in asymptotic regions,
the latter resulting in a potential that becomes too positive.
However, energetics are less accurate becauseq ) 1/3 reduces
the emphasis on energetically important regions. Given thatq
) 1/3 andq ) 2/3 give essentially the same potentials out to 5
bohr for both atoms, we have retained the value ofq ) 2/3 in
order to maintain accurate energetics.
Our calculations for this paper, together with those of paper

I, have been performed self-consistently using a modified
version of the CADPAC program.16 Given the highly flexible
form of our functional, it cannot be guaranteed that the final
self-consistent Kohn-Sham solution will be a global minimum
in the space of Kohn-Sham determinants. We can be sure only
that it is a stationary point. Despite this, in virtually all of our
calculations we have found the final self-consistent energy to
be the lowest energy obtained during the self-consistent
procedure.
This completes the outline of our procedure. The principal

differences from paper I are the use of a variational procedure
to compute the shiftskMσ, the use of atomization energies rather
than molecular total energies in the training data, and a modified
final corrective procedure. In the next section we present a new
functional, denoted TH2, determined according to these pre-
scriptions.

3. TH2 Functional

The basis for the development of the TH2 functional is the
TH1 functional of paper I. The terms (9/6,0,2,0) and (9/6,0,0,1)
(where the notation (a,b,c,d) is used wherea, b, c, andd are
defined in (eq 10) have been removed as their potentials can
formally diverge. Second, we have chosen to replace the terms
(8/6,0,1,0) and (1,0,0,0), which can contribute a finite value to
the asymptotic potential, by (17/12,0,1,0) and (13/12,0,0,0) whose
potentials vanish asymptotically. All other TH1 terms have been
retained.
We observe that for closed-shell systems, the term (10/6,0,2,0)

is equivalent to a scaled Weizsacker kinetic energy functional

For a closed-shell system, an exact solution of the Kohn-Sham
equation (i.e., one that yields an exponentially decaying
asymptotic density) involving this functional clearly leads to a
finite system-dependent asymptotic potential (which is propor-
tional to I, if the asymptotic density is exact). This functional
would therefore appear particularly desirable. The term
(10/6,0,0,1) is an open-shell analogue. As in paper I, we have
made no effort to ensure the functional satisfies other known
conditions. For example, this scaled Weizsacker term is
inconsistent with exact density scaling conditions.
The functional form for TH2, together with the resulting

expansion parameters from the procedure described in the
previous section, are presented in Table 1. In Table 2 we present

ΩE ) ∑
M)atoms

wM[Exc
M - E fit

M]2 + ∑
M)mols

wM[AExc
M - AEfit

M]2

(19)

Ω ) ΩV + ΩE (20)

∂Ω
∂ωabcd
|
kMσ

) 0 (21)

∂Ω
∂kMσ
|

ωabcd

) 0 (22)

TW ) 1/8∫|∇F|2/F dr (23)
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the computed values ofkMσ. As with the TH1 functional, the
R shifts resemble the hardness for open-shell systems but are
less than the hardness for closed-shell systems, which is
consistent with theoretical requirements.
In Figure 1 we compare the self-consistent TH2 and BLYP

potentials for the Ne atom. The two potentials are similar in
energetically important regions but differ asymptotically. For
this system the computed value ofkσ is 0.28. In Figure 2a,b
we compare the BLYP and TH2 potentials with our computed
near-exact potentialVzmp(r) + 0.28. Beyond approximately 2
bohr, the BLYP potential falls below this near-exact curve and
rapidly approaches zero. The density is therefore too diffuse.
However, the TH2 potential resembles the near-exact potential
up to approximately 4 bohr, which should result in a much less
diffuse density.
In Table 3 we present errors in self-consistent total energies,

compared to near-exact values, for the TH2 and BLYP func-
tionals at optimized geometries, for first-row systems both within
and absent from the training set. The mean absolute errors are
6 and 18 mEh, respectively. The corresponding value for the
TH1 functional is 3 mEh. The lower accuracy with TH2
compared to TH1 is a consequence of the new fitting procedure
where the emphasis has been placed on atomization energies

rather than total energies. This slight decrease in total energy
accuracy is associated with a significant improvement in

TABLE 1: Optimized Parameters ωabcd for TH2 Functional
(See eq 10)

a b c d ωabcd

13/12 0 0 0 +0.678831E+00
7/6 0 0 0 -0.175821E+01
8/6 0 0 0 +0.127676E+01
9/6 0 0 0 -0.160789E+01
10/6 0 0 0 +0.365610E+00
17/12 0 1 0 -0.181327E+00
9/6 0 1 0 +0.146973E+00
10/6 0 1 0 +0.147141E+00
11/6 0 1 0 -0.716917E-01
10/6 0 2 0 -0.407167E-01
11/6 0 2 0 +0.214625E-01
12/6 0 2 0 -0.768156E-03
10/6 0 0 1 +0.310377E-01
11/6 0 0 1 -0.720326E-01
12/6 0 0 1 +0.446562E-01
7/6 1 0 0 -0.266802E+00
8/6 1 0 0 +0.150822E+01
9/6 1 0 0 -0.194515E+01
10/6 1 0 0 +0.679078E+00

TABLE 2: Computed Values of the Shifts kMσ (in Eh) for
Training Set Systems and Values for the Hardness (I - A)/2

kR kâ (I - A)/2

C 0.17 0.19 0.18
N 0.21 0.22 0.27
NH2 0.17 0.16 0.19
CH 0.16 0.16 0.17
Li 0.12 0.54 0.09
CH2 0.17 0.18 0.18
O 0.23 0.23 0.22
F 0.24 0.24 0.26
O2 0.19 0.18 0.21
H 0.24 0.24
BH 0.16 0.16
CH4 0.18 0.18 0.37
CO 0.16 0.16 0.29
F2 0.19 0.19 0.23
H2 0.21 0.21 0.32
H2O 0.20 0.20 0.35
HF 0.23 0.23 0.41
LiH 0.17 0.17
N2 0.16 0.16 0.33
Ne 0.28 0.28

Figure 1. Comparison of self-consistent TH2 (solid curve) and BLYP
(dotted curve) potentials for the Ne atom (in au), plotted as a function
of radial distance.

Figure 2. Near-exact continuum potentialVzmp(r) + 0.28 (solid curve)
for the Ne atom (in au), plotted as a function of radial distance,
compared with self-consistent (a, top) BLYP and (b, bottom) TH2
potentials (dotted curves).
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computed atomization energies, as shown in Table 4 (the zero-
point contributions to the atomization energies are taken from

ref 15). The errors from TH1 are unacceptably large, and it
was this observation that led us to introduce atomization energies
into the fitting procedure. The TH2 functional has a mean
absolute error of 3.3 kcal/mol, compared to 8.0 and 6.1 kcal/
mol with TH1 and BLYP. In particular, we note that errors
for the difficult systems F2, O2, CO2, N2H4, and O3 are
substantially improved with TH2.
Despite this success, a word of caution is necessary. The

TH2 functional has been developed by training on a small set
of first-row systems. Our results demonstrate that it can be
usefully applied to other first-row molecules, although there is
no reason to expect the functional to be as successful for systems
that differ significantly to those in the training set. A
preliminary study on second-row molecules indicates that while
TH2 structures are at least comparable to those from BLYP,
atomization energies are considerably less accurate. However,
the study also suggests that the introduction of second-row
systems into the training set can significantly reduce these
errors.17 Like the TH1 functional, TH2 should therefore be
interpreted as a first-row functional.

4. Hydrogen Abstraction Reactions

In a recent study, Skokov and Wheeler18 examined the six
hydrogen abstraction reactions

and concluded that the hybrid functionals B3LYP and B3P8619-21

gave significantly improved reaction barriers compared to the
continuum density functionals BLYP and BP86. Such hydrogen
abstraction reactions are a keen test of DFT because of the
creation of an apparent “extra bond” at the transition state. The
failure of conventional functionals to describe reaction I was
previously highlighted by Johnson et al.,22 and a detailed study
of reaction V was performed by Baker et al.23 We have
performed calculations using the BLYP, B3LYP, and TH2
functionals on these six reactions, using the TZ2P basis set.
Tables 5 and 6 present optimized transition-state structures (each
confirmed as having a single imaginary harmonic vibrational
frequency) and classical reaction barriers for the six reactions.
These are compared with results from high-level ab initio
calculations.
Reaction I, the simplest possible hydrogen abstraction reac-

tion, is troublesome for existing functionals. BLYP overesti-
mates the bond length and significantly underestimates the
reaction barrier; the bond length is improved with the B3LYP
functional, although the barrier is still too low by more than a
factor of 2. In contrast, the TH2 functional yields a bond length
comparable to B3LYP, with a much improved reaction barrier.
BLYP provides a much improved description for reactions

II and III, although the barriers are still too low. Once again,
the barrier increases with the introduction of exact exchange in
B3LYP. For these reactions, the TH2 prediction is comparable
to BLYP.

TABLE 3: Near-Exact Total Energies Etot,0 and Errors in
Self-Consistent TH2 and BLYP Total Energies (All
Quantities in Eh) for Systems Both Within and Absent from
the Training Set

Etot,0 Etot
TH2 - Etot,0 Etot

BLYP - Etot,0

H2 -1.174 -0.003 +0.005
H2O -76.437 +0.007 -0.011
CO -113.325 +0.001 -0.023
F2 -199.529 -0.006 -0.071
N2 -109.543 +0.003 -0.017
HF -100.458 +0.004 -0.023
LiH -8.070 -0.005 +0.002
CH4 -40.513 +0.005 +0.011
H -0.500 +0.001 +0.005
Li -7.478 -0.003 -0.003
C -37.845 +0.002 -0.002
N -54.589 -0.001 -0.001
O -75.067 -0.004 -0.018
F -99.734 +0.001 -0.027
Ne -128.939 +0.000 -0.019
CH -38.479 -0.001 -0.002
CH2 -39.148 +0.011 +0.003
O2 -150.326 -0.017 -0.058
NH2 -55.879 +0.004 -0.006

C2H2 -77.376 +0.007 +0.003
C2H4 -78.586 +0.009 +0.009
C2H6 -79.823 +0.015 +0.021
CO2 -188.599 -0.003 -0.053
H2CO -114.507 +0.002 -0.020
H2O2 -151.562 +0.004 -0.041
HCN -93.431 +0.001 -0.012
Li2 -14.995 +0.006 +0.001
N2H4 -111.876 +0.014 -0.003
NH3 -56.563 +0.007 +0.002
O3 -225.434 -0.017 -0.089
CH3OH -115.728 +0.012 -0.007

∆ 0.006 0.018

TABLE 4: Experimental Total Atomization Energies (∑D0)
and Errors in Self-Consistent BLYP, TH1, and TH2
Atomization Energies (∑D0

calc - ∑D0) (All Quantities in
kcal/mol) for Systems Both Within and Absent from the
Training Set

BLYP TH1 TH2 expt

H2 +2.2 -0.3 +2.4 103.5
H2O +1.7 +1.0 -5.5 219.3
CO +1.7 +3.5 -1.4 256.2
F2 +11.1 +20.0 +5.7 36.9
N2 +9.5 -8.7 -3.1 225.1
HF +0.5 +5.7 -1.1 135.2
LiH -0.4 -1.4 +1.3 56.0
CH4 +2.8 -4.5 +0.4 392.5
CH +2.6 -1.8 +2.8 79.9
CH2 +2.6 -3.5 -4.2 179.6
O2 +14.4 +18.9 +6.2 118.0
NH2 +9.3 -6.8 -2.0 170.0

C2H2 +1.0 -6.0 -0.7 388.9
C2H4 +2.7 -6.5 -0.4 531.9
C2H6 +0.9 -10.3 -3.5 666.3
CO2 +9.4 +14.0 -1.4 381.9
H2CO +5.9 +3.8 -0.7 357.2
H2O2 +9.2 +8.3 -5.9 252.3
HCN +8.4 -5.0 +0.7 301.8
Li 2 -4.3 -9.3 -7.6 24.0
N2H4 +12.7 -14.0 -7.6 405.4
NH3 +6.8 -7.8 -3.4 276.7
O3 +22.6 +28.4 +4.0 142.2
CH3OH +3.2 -2.4 -6.4 480.8

∆ 6.1 8.0 3.3

H2 + H f H + H2 (I)

CH4 + CH3 f CH3 + CH4 (II)

H2 + CH3 f H + CH4 (III)

H2 + NH2 f H + NH3 (IV)

H2 + OHf H + H2O (V)

CH4 + OHf CH3 + H2O (VI)
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Reaction IV is a difficult case for BLYP. The barrier is
significantly too low, and the transition state occurs much too
early in the reaction profilesi.e., at a large NH2‚‚‚H2 distance.
The B3LYP and TH2 structures and reaction barriers are
comparable and are a significant improvement over BLYP.
Reaction V is particularly interesting. Baker et al.23 examined

the system for a range of fixed H2‚‚‚OH distances. With the
BLYP functional, they observed a transition state whose energy
was below the energy of the reactants. (The same observation
was made in ref 18.) With a very extensive basis set, Baker et
al. did not observe this feature in their range of H2‚‚‚OH
distances, and so the reaction profile became purely attractive.
In contrast, their B3LYP results exhibited a well-defined positive
reaction barrier. Like Skokov and Wheeler, this study led Baker
et al. to stress the importance of exact exchange in describing
this abstraction reaction. Our BLYP results for this reaction
are consistent with these earlier studies. In our attempt to locate
a transition state, the H2‚‚‚OH distance slowly increases to 2.8
Å, at which stage the gradient falls below the required tolerance
to define a transition state. The energy of the resulting structure
lies below that of the reactants. However, given that the surface
is very flat and that Baker et al. demonstrated that the position
of this feature is strongly basis set dependent, we do not assign
any physical significance to the feature and simply conclude
that the BLYP description is incorrect, as it does not predict
any physical barrier. Our B3LYP calculations do predict a
positive reaction barrier, although it occurs earlier in the reaction
profile than the ab initio result. The TH2 functional also predicts

a positive barrier, even earlier in the reaction profile than for
B3LYP. In Figure 3 we summarize these results by plotting
reaction profiles for this reaction using the three functionals.
Following Baker et al. we optimize structures for a variety of
fixed H2‚‚‚OH separations; energies are relative to the reactants.
Like BLYP, the B3LYP profile is attractive at large separation,
although it becomes repulsive as the reactants approach one
another. The TH2 profile is repulsive right up to the transition
state.
The results for reaction VI are analogous to those of reaction

V. BLYP predicts an attractive energy profile with no physical
barrier. Both the TH2 and B3LYP functionals yield physical
transition states, whose geometries agree well with the best ab
initio values. The barrier with TH2 is significantly lower than
the B3LYP value.
Next, consider experimental reaction barriers rather than ab

initio ones. To compare with these quantities, several correc-
tions must be made to the computed classical barriers in Table
6. First, basis set superposition errors (BSSE) must be
accounted for. Our calculations demonstrate that the BSSE is
largest for the BLYP functional and smallest for TH2. BSSE
corrections increase the barrier by between 0.13 and 0.36 kcal/
mol for the TH2 functional. Following Kraka et al.26 we also
include vibrational corrections at 300 K as defined in ref 28
which can raise the barriers by up to 0.7 kcal/mol (neglecting
the lowest mode in reactions II and VI), and Wigner tunneling29

corrections at 300 K:

whereν is the magnitude of the imaginary harmonic frequency.
This term can lower the barriers by up to 0.9 kcal/mol. The
largest correction to the classical barrier arises due to zero-point
vibrations, which vary between-1.1 and+2.1 kcal/mol. We
have not included any other temperature effects due to changes
in the number of translational and rotational degrees of freedom,
as we are uncertain of their theoretical justification for transition-
state reactions. In Table 7, we compare these corrected barriers
with experimental values. (It is clear from the experimental
papers that there is some uncertainty in the experimental barriers,
typically 0.5 kcal/mol, for several of these reactions.) Both the
B3LYP and TH2 functionals have a mean absolute error of less

TABLE 5: Transition-State Structures (in Å and deg)
Computed Using BLYP, B3LYP, and TH2 Functionals,
Compared to ab Initio Values

quantity BLYP B3LYP TH2 ab initio

H- H′-H
R(H-H′) 0.936 0.930 0.931 0.930a

CH3-H′-CH3

R(C-H′) 1.359 1.348 1.362 1.36b

CH3-H′-H′′
R(C-H′) 1.410 1.394 1.401 1.393c

R(H′-H′′) 0.905 0.903 0.909 0.897c

θ(H-C-H′) 103.3 103.5 103.5 103.7c

NH2-H′-H′′
R(N-H′) 1.353 1.314 1.311 1.307c

R(H′-H′′) 0.881 0.891 0.903 0.890c

θ(N-H′-H′′) 162.1 161.4 162.8 158.7c

HO-H′-H′′
R(O-H′) 1.406 1.525 1.329c

R(H′-H′′) 0.808 0.787 0.829c

θ(O-H′-H′′) 163.4 164.1 162.8c

CH3-H′-OH
R(C-H′) 1.222 1.227 1.181d

R(O-H′) 1.313 1.342 1.330d

θ(C-H′-O) 173.4 174.3 172.1d

aReference 24.bReference 25.cReference 26.dReference 27.

TABLE 6: Classical Reaction Barriers (in kcal/mol)
Computed Using BLYP, B3LYP, and TH2 Functionals,
Compared to ab Initio Values

reaction BLYP B3LYP TH2 ab initio

I 2.76 4.01 7.88 9.61a

II 13.64 15.92 13.35 17.5b

III 8.14 9.78 8.95 11.81c

IV 3.51 6.33 5.86 9.51c

V 1.23 0.89 5.62c

VI 2.58 0.48 6.62d

aReference 24.bReference 25.cReference 26.dReference 27.

Figure 3. Reaction profiles for H2 + OHf H + H2O with the B3LYP,
BLYP, and TH2 functionals. The energy (in kcal/mol) is relative to
the reactants.

∆E) -kT u2

12(1+ u2/24)
u) hν/kT (24)
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than 2 kcal/mol for these six reactions, which is a significant
improvement over BLYP.
It is clear from the above results that an improved description

of hydrogen abstraction reaction barriers can be obtained without
the need to introduce a fraction of exact orbital exchange. In
addition, it is sometimes claimed that a reason for the failure
of conventional continuum density functionals to yield accurate
barriers is the issue of self-interaction. We have not specifically
addressed this issue, although the shifted ZMP potentials in the
fitting procedure are, in principle, the functional derivatives of
a functional that correctly accounts for self-interaction. We
believe a principal reason for the success of TH2 is that it was
developed using a knowledge of exchange-correlation potentials
and so should yield improved asymptotic densities, which may
be important for an accurate description of the transition from
reactants to products. Finally, we mention total reaction
energies. In Table 8 we compare BLYP, B3LYP, and TH2
reaction energies for reactions III-VI with ab initio results.26,27
The TH2 functional correctly predicts all four reactions to be
exoergic, and the reasonable accuracy suggests that the func-
tional can also provide a reasonable description of the barrier
heights for the reverse endoergic reactions.

5. Conclusion

In this paper, we have presented a new first-row GGA
exchange-correlation functional, denoted TH2, obtained using
a modified version of the method described in paper I. By
introducing atomization energies into the fitting procedure we
have significantly reduced the atomization energy errors of the
TH1 functional, with only a slight decrease in absolute energy
accuracy. We have used the TH2 functional to study six simple
first-row hydrogen abstraction reactions. For the reactions
where the BLYP description is reasonable, the TH2 results are
comparable to BLYP. In the reactions where the BLYP reaction
barrier is poor, the TH2 functional is a significant improvement.

For the two cases where BLYP completely fails to predict a
reaction barrier, the TH2 functional, like B3LYP, does predict
a positive barrier. The results demonstrate that improved
hydrogen abstraction reaction barriers can be obtained without
introducing a fraction of exact orbital exchange into the
functional.
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TABLE 7: Classical Reaction Barriers (in kcal/mol),
Corrected for BSSE, Zero-Point Vibrations, Thermal
Vibrational Effects, and Wigner Tunneling, Computed Using
BLYP, B3LYP, and TH2 Functionals, Compared to
Experimental Values

reaction BLYP B3LYP TH2 expt

I 2.31 3.19 6.97 9.7a

II 13.10 15.27 12.70 14.3b

III 9.74 11.14 10.42 10.7c

IV 5.91 8.40 7.69 8.5d

V 2.39 2.50 4.0e

VI 1.61 -0.12 3.7f

aReference 30.bReference 31.cReference 32.dReference 33.
eReference 34.f Reference 35.

TABLE 8: Reaction Energies (in kcal/mol) Computed
Using BLYP, B3LYP, and TH2 Functionals, Compared to
ab Initio Values

reaction BLYP B3LYP TH2 ab initio

III +0.42 +0.30 -2.60 -4.01a
IV -1.69 -1.60 -2.71 -6.39a
V -12.00 -10.80 -11.70 -16.65a
VI -12.41 -11.11 -9.10 -12.10b

aReference 26.bReference 27.

3168 J. Phys. Chem. A, Vol. 102, No. 18, 1998 Tozer and Handy


